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Abstract—Analytical and experimental results for a fully developed laminar flow in a curved channel with
a square cross section are obtained under the condition of a constant wall heat flux. A secondary flow due
to the centrifugal force appears in the channel, and the flow and the temperature fields are strongly in-
fluenced. In the case of an intense secondary flow, the concept of the boundary layer of the secondary flow
is introduced. The moment and the energy equations in the boundary layer are solved on the basis of kinetic
energy and entropy production balance. The resistance coefficient and the Nusselt number are obtained
analytically and experimentally and it is shown that they are in good agreement.

NOMENCLATURE (v 2), (Y, 2)/d.

y-directional velocity component

in the core region; Greek symbols . . .

Uy =0,z = 0); 3, non-dimensional velocity bound-

ary layer thickness

Ty =0,z =0); dimensionized by d);

specific heat at constant pressure ;
side length of the cross section;

heat conductivity; boundary layer thickness;

Dean number, Re /d/R; ", ’g = ilfg - %«‘*’it
Nusselt number, gd/kAT : & c = 1/2 — |zl
pressure; & { = 0r/; i
P = P'/pU2; T, wall temperature gradient (con-
Prandtl number, pvC,/k; stant);
h;::l ﬂuxn:gh:rw‘:;fp/ ’ 4, resistance coefficient, oP/(R/d).
radius of curvature of the a0;
channel; P df:nsxty;. o
Reynolds number, Ud/v; v, kinematic viscosity.
fluid temperature; .
(T, — T)xd: Subscripts
1 ‘ m, core region;

wall temperature;
temperature difference between

the wall temperature and the dary layer along the wall;

mixed mean fluid temperature; 0, straight channel.
(U, V., W), velocity component in the (8, ¥,
Z)-direction; 1. INTRODUCTION

, mean velocity in the -direction; CurvED channels with rectangular cross sections
(u, v, W), (U, V, I_’V)/ U; are widely used for heat exchange and cooling in
(0,Y,Z), co-ordinate system (see Fig, 1); many industrial fields, for example, cooling of
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Oz, non-dimensional  temperature

1,1, ifi, iv, v, characteristic region in the boun-
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hollow conductors in cryogenic engineering and
it is important to obtain basic knowledge about
their performance in heat transfer. In this
report, the analytical and the experimental re-
sults for a laminar flow and temperature fields
in a curved channel, of a square cross section, are
presented. In a flow in a curved channel, centri-
fugal force acts on a fluid as a body force and a
secondary flow is caused by this body force. The
flow and the temperature fields are seriously
affected by this secondary flow.

Many experimental [1, 2] and analytical
results [3] on pressure loss and heat transfer for
aflow in a curved circular pipe have already been
published. The momentum and energy equations
in a boundary layer of the secondary flow, which
exists along the wall of the curved pipe, were
used to analyze the flow and the temperature
fields. However, it is difficult to use the same
method to analyze the flow and the temperature
fields in a square curved channel.

At the central part of the flow passage, when
the intensity of the secondary flow is strong, it is
possible to neglect the affect of the viscosity
and heat conduction compared with a stress
analogous to the Reynolds stress and heat
convection due to the secondary flow com-
ponents. The affect of the viscosity and heat
conduction are confined within a thin layer along
a wall of the passage, where the intensity of the
secondary flow is weakened. Because of this,
we can consider the existence of the boundary
layer along the wall of the passage for a flow
which is strongly affected by the secondary flow.
In the following analysis, the flow and tem-
perature fields in the curved channel are divided
into two regions, that is, the core region about
the central part of the passage where the affect
of the secondary flow is dominant over the
viscosity and heat conduction and the boundary
layer region along the wall where the affect
of the viscosity and heat conduction cannot be
ignored. The existence of such a boundary layer
is confirmed by experimental results. The kinetic
energy and entropy production balance equa-
tions in the boundary layer, which are obtained
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by use of momentum and energy equations, are
used to solve the flow and the temperature fields.
This method has a wide applicability and can be
applied to a flow in a channel which has a non-
circular cross section.

2. ANALYSIS

2.1. Analysis of the velocity field

The following analysis is valid for a fully
developed laminar flow in a square cross sec-
tional curved channel, whose wall temperature
gradient is kept constant. All physical properties
are assumed to be constant.

As we assume that physical properties are
constant, the velocity and the temperature fields
are independent and we can solve the tem-
perature field by using the results of the velocity
field.

F1G. 1. The co-ordinate system.

Asis indicated in Fig. 1, for a flow in a curved
channel, the secondary flow, which consists of a
pair of longitudinal vortex rolls, appears in the
passage due to the affect of the centrifugal force.
Theintensity of the secondary flow depends upon
the value of the Dean number K(K = Re,/d/R).
In the case of a small Dean number, the intensity
of the secondary flow is weak and the affect of the
viscosity must be considered in the whole cross
section of the channel. The dissipation of the
kinetic energy due to the viscosity cannot be
neglected in the core.
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With the increase of the Dean number, the
intensity of the secondary flow becomes strong.
For such a state, the affect of the viscosity can
be distinguished only in a thin layer along the
wall and it is possible to neglect its influence in
the core. Therefore, we consider the existence of
the boundary layer and assume that the effect of
the viscosity is confined in that layer.

As is indicated above, for the flow with an
intensive secondary flow, it is possible to con-
sider two different regions; the core region and
the boundary layer region. In the following
sections, we analyze each region and obtain the
solution for the flow field.

2.1.1. Velocity distribution in the core region.
Indicating the values in the core region by
suffix m, and neglecting the terms that indicate
the effect of the viscosity, we obtain the following
equations for the core region:

ov,, ov, ul opP,,
Uy —— Wn—— — = -7 (1)
oy 0z (R/d) oy
0 ou,, ou,, ] @
— W, —— =
" oy " Oz
O , | Ou_ 0P, o
v, — - __
Y ¥m 5z oz
0
O W _ @)
dy 0z

where the higher order terms of d/R are neglected
in the consideration of the fact of d/R < 1.
Equations (1)3) are the momentum equa-
tions and equation (4) is the continuity equation.
The particular solution for the above equations
is obtained if we assume that the secondary flow
in the core region can be expressed by a uniform
stream which flows from the inner to the outer
part of the curvature. The velocity components
in the y—z plane for such a uniform stream are
given as v, = C, (C, is constant) and w,, = 0.
Substituting these relations into equations (1)
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and (2), we can solve u,, and P, The results are
given in the following equations.

v, =C, (5)
un(y) = C; + iy (©)
<,
Wy = 0 M
P(y) = — g,w
e d) o Gon @

where C, and p; are constant.

2.1.2. The kinetic energy balance in the bound-
ary layer. On the assumption that a velocity
boundary layer of a constant thickness J exists
along the wall, we obtain the relations -that
indicate the balance of the kinetic energy inside
the boundary layer. Error caused by this assump-
tion might be serious near the point where the
secondary flow separates from the wall (y =4,
z = (), but this local error can be neglected in
the calculation of the resistance coefficient.

We divide the velocity boundary layer along
the wall into five characteristic regions as shown

z

1

rr — L

L - T
. -',:'_"Jl -

] 1
: = y
Core region |20

Boundary layer
F1G. 2. The velocity boundary layer along the wall.
in Fig. 2 and have the boundary layer equations
in each region considering the fact of d/R < 1.
Equations in region i are (n = 4 — y)
0P  u? . 1 é%
on  (R/d) " Redn*

®
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Su ou t P
i DA e ez
+ *t?&?? ﬁ + R 27 2] {10
&P fw r 1 P .
~Sapiio f?f 0 (1)
dz an Re ﬁn
ow
Yl 5
oz (12)
Equations in region i are (¢ = 1 ~ 2z}
an u? { t’:‘f‘z'
e P R S = {1
& Ve tm TR (13)
Ju éu 1 &u
A e
B R TR W
aP ow w1 Pw
55 e E:}T W-é-g -+ EB‘ ag-z = {} (15}
aw .
Equations in region iii are (5 =4 + y}
- 2
_ ff} } ‘?ﬁ -0 (N
an {R;’d} Re dn®
Su ou 1 Pu
— e = 3 {8
4 35;; w&z Re dn* (18)
&P dw dw 1 8w
o [ m - 19
E» ”ﬁrg n@z+Re5ﬂz (19
& %ﬁi ~0. 0)

Equations in region iv are (§ =%~ y, & =
3‘ - Z)

el

o w

On
dffd -%I ~»+ vwm»}» v:v§-+ W — } dndé
5 8": v

% w s

§P+ v + Ev (5% N 8%) o 0o
— 1‘ oW ] = (
o @i Re a&2 @D

du 1 P &y
ht ot e b ( +§§):G (22)
e

an 65 Re an?
LA ILLAN. (‘azwﬁz"j 0 (23)
8¢ on  BF Re\ep®  aer) T
@+§w& (24

on ¥

Equations in region v are {n =14y,

{=3-1)

B B 61? 1 /&e uzli
P s....“.,.;..,

Rt ) e
du du (@"“ 8%u

e ¥ ég -+ Re on? @’z}') =0 (26)

ap aw dw 1 (3w w
A A T -0
ot oy “55+Re< ) =0en
ov  Bw
e = ], 28
% 28)

To obtain the kinetic energy balance equa-
tions, the momentum equations in each region
are multiplied by the corresponding velocity
components and then cach equation is inte-
grated over its region. Adding the kinetic energy
balance equations in each region, we obtain the
equation which indicates the kinetic energy
balance in the whole region of the boundary
layer along the wall

The kinetic energy balance equation in the
y-z plane becomes:

dw d
f {[U pj pd T {vmpiil]qmb}d— V( j (“‘“’“ + Uwa“ - wt ai:) J'I dz
o
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X

IJ‘J(azv
+R—e vW+v
00
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X
ov Ov
dyd¢ +Jj(— P — + ow—
6 >ﬂ ¢ on o¢

62 62 2
va—£;+ w——z + wir) dn dé

a"z

d4-90

w
ootz 1 () e

The subscripts i, ii, iii, iv and v in the above
equation indicate the values in the region
i, ii, iii, iv and v, respectively. Terms set in bold
type are the higher order terms of 6 (J is the
non-dimensional thickness of the velocity
boundary layer) compared with the other terms
and can be neglected. The terms that indicate the
dissipation energy in the region iv and v are
also to be neglected, because the order of magni-
tude of these terms are §°.

The second term on the left side of equation
(29) indicates the kinetic energy that is needed
to accelerate the fluid in region i and the tenth
term indicates the kinetic energy produced by
the deceleration of the fluid in region iii. As the
cross section of the passage and the flow pattern
are symmetrical around the z-axis, the summa-
tion of these terms is reduced to zero. The sum-
mation of the fourth and the eighth term on the
left hand side of equation (29) is also reduced to
zero for the same reason.

Based on the above consideration, equation
(29) is reduced to equation (30).

i‘:acl{Pm(% —8) —P,(—% +9d)}dz

3-5 6
+ [ [ {“20/(R/d)}ii dyd¢
—§+50

) (2] o
o T e ] o

—3+80

The first term on the left side of equation (30)
represents the kinetic energy introduced into
the boundary layer from the core region due to
pressure ; the second term represents the energy
that is required to make the fluid flow in region
against the centrifugal force; the third term
represents the energy dissipated by the vis-
cosity. Equation (30) indicates that the secondary
flow is maintained by such a simple energy
balance mechanism that it absorbs the kinetic
energy from the core region and loses that
energy because of the body force and the
viscosity.

ARG

o 0

(30)

The kinetic energy balance equation in the flow direction (6-direction) becomes :

145 &

zﬁ?uma+ﬁ%MM+j
00 ++80

56 53-8
fusdydé + [ fu,dndé+ | | uydy dz]
b0 b0
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55-5 54-5
+ Ou dpdz + — az d d
Uy —- —
on “wazl s Re) 1dz
o O
66
+ v—+uw- dnpdé + — ou dyd
v ), al tuge), e
00
376 ¢ ~3+8 b
+ J(uva—{—uw )ddé-&-l (az)ddé
) ay " e )P T Re aer ), "
~3+60 -%4s5 0
d 5 3 é
i du 1 az o%u
+ — + dydé + —
L ( " ’”"aé) " “Re”(“ ae:)“”d”:
00 00
5406 5 4—0

+jj(—uvi'f—uw% dd+1JJ<azu dndz =0. (31
on 0z i e Re 1%5';5 iii =" ol
0 0 g O

Here, it must be mentioned that the following two relations are valid in regions iv and v,
respectively.

5 38 LR
ou du i o*u o*u
Ajjuivdndf +J‘J’(uvg—+ uwaé)wdﬂdi + mJJ(“b—n-i + ué—?)ivdndé =0
0 00 00
3 d 8 dd
dndé + uva—+u’a>d dé + ~1~ ( ddé
u,dny waé n R pdé = 0.
(1N} Q0

And as the cross section is symmetrical about the z-axis, the relation of w; = — w; must be

considered.
Equation (31) is simplified to equation (32) by using these relations.

546 PP
/1[‘. [ i +utdndz + | [udy df]
b 0 -§+50

A e L)

0

& %—d a * ] P

u
j J {<?v_;l _-<%05;)u}dn(L }‘ J cxuvéjlidydé
o 0 ~4+860

e LS

1 £ &%u 0u h ézu) :}*
AT (o T o
0 0
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The first term on the left side of equation (32)
represents the kinetic energy from the pressure
gradient in the 6-direction. The second term
indicates that the work done by the pressure
gradient in the core region is introduced into the
boundary layer by means of —uv. The third
term represents the energy dissipated by the
viscosity.

The condition for the constant flow rate is
written as follows:

5 4-5 -6 &
$=0{ {w+ugpdndz+ | [u;dydé¢
0o 0 -$+460

35 3-8

+

—§j+6 0

The first and the second terms on the right
hand side of equation (33) represent the flow
rate in the boundary layer, and the third term is
the flow rate in the core region. The flow rate in
regions iv and v can be neglected because their
orders of magnitude are 52.

Considering the balance of force between two
cross sections in the axial direction, the distance
between them being (R/d)df, we obtain equa-
tion (34).

- 1))
SERERE
o) e (@), S

3-8

SRR
8E) sao ]

—3+3

u,(y)dydz. (33

The left hand term of the above equation
represents the pressure drop, and the right hand
term the shear stress at the wall surface.

Four unknowns exist; C,, C,, A and § C, and
C, indicate the intensity of the secondary flow
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in the core region and the value of the 6-
directional velocity component at the center
of the passage, respectively. A is the resistance
coefficient and J is the non-dimensional thick-
ness of the velocity boundary layer. If the velo-
city distributions in regions i, ii and iii are known,
these unknowns are solved by use of equations
(30), (32), (33) and (34).

2.1.3. The velocity distribution in the boundary
layer. (i) The velocity distribution in region i.
We consider a rectangle ABCD in region i as
shown in Fig. 3. The flow rate of the secondary

G
Yii i F
Jr H E -
i H +
H c 8
- s i
i D A
— ] |-——
c

F16. 3. The velocity distribution in the boundary layer.

flow that flows into the boundary layer through
the boundary CD must cross the BC plane.
Because of the continuity of the flow rate of the
secondary flow, we have the following equation :

a
Cyz = | wdn. (35)
o
Boundary conditions for w; are given by
equation (36).
} (36)

Equation (36) indicates that w; must reduce to
zero at the wall surface. At the edge of the
boundary layer, w; and its gradient are smoothly
connected with their values in the core region.
Here we assume that the distribution of w; can

w =0 at =0

ow
w,=-—=0 at 5 =24
, 6’7
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be expressed by a polynomial of #, that satisfies
equations (35) and (36), as follows:

wege{() 200 o

By use of equation (37) and the continuity
equation of —dv,/d0n + 0w,/0z = 0, we obtain
the distribution of v;.

12 L, 2 5, 1y
”i—is*cl{za" T e GY

This distribution satisfies the condition at the
edge of the boundary layer that v, and its
gradient smoothly connect with the core region
distribution, v,, = C,.

The distribution of u; is expressed by equation
(40) so as to satisfy the boundary conditions
given by equation (39).

=0 at n =0, U = Up(z — O),

Ou __ dun at =05 (39
an dy y=4-o
A 2 A
“i={"ci+s(cz+5ci>}
1 P
xﬂ—sg(cz+§a>’7~ (40)

(if) The velocity distribution in region ii. As we

assumed that the thickness of the boundary

layer was constant, the flow rate of the secondary

flow that flows into the boundary layer through

the plane DF (see Fig. 3) should pass over the

plane GH. This condition is expressed by

equation (41).

)

(3-90C, = t{ (—vy)de. (41)

The distribution of v;; that satisfies equations
(41) and (42) is given by equation (43).

vy =0 at ¢ =0,

vy = C 0 at ¢=08 (42

1’—a_g=
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C C
by =3 (60 — )¢ + S+ (=90+ 12

C
+ 52‘(45 —6)&. (43
The distribution of wy; that satisfies the con-
tinuity equation of dv,/dy — dwy/8¢ = 0 and
boundary conditions of w;, =0 at £ =0, § is
given by equation (44).

(44)

wy = 0.

Boundary conditions and the distribution of
u;; are given by equations (45) and (46).

uii :0 at é =0,

u..
Uy = Uy(D), % =0 at

¢

e b9} o

(iii) The velocity distribution in region iii. From
the continuity of the secondary flow, we obtain
equation (47).

¢=0 (4

]
[(“ wi)dn= C z. 47)
)

The boundary conditions for wy; are given by
equation (36). From equations (47) and (36), the
distribution of wy; is obtained.

Wi = — W =

e o) )

We express the distribution of v,; so that it
satisfies the continuity equation of dvy;/én +
dwy/0z = 0 as follows:

21, 2., 1,
Bedle o 2 el e
5 C‘{za 3 T g “9)
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The boundary conditions and the distribution
of u,; are given by equations (50) and (51).

u; =0 at 7 =0, Uiy = t(—3 + 0),

Ou;: du
2=_" at =0 (50)
on  dy |y=—34s 1
A2 A
o= C
um {Cl 6 ( 2~ 2C )}

1 A
- = |Cy — —= n~ 51
2.1.4. Solution for C,, C,, 4, 6. Substituting
the velocity distributions given in section 2.1.3

into equations (30)~(34), we obtain the following
relations:

wape @) G-

“a_17N G
*\140 ~ 42°) " Re

{Cl (2852—376+16)} (52)
43 1 16 :
2 /2 5 17 4
= 3Re (F) {95 e +§} G3)
1=(3-901+30)C, (54)
A 14

In the above equations, equation (54) results
from equation (33). As we neglected the terms
that represented the flow rate in region iv and v
in equation (33), instead of equation (54) we have

39)C,. (56)

Equation (55) is based on equation (34), and
in obtaining equation (55), the following approxi-
mate relations were used.

b 0 a
. .
1v dz# 1
f(an)ﬂ=0 on
4-4

1=301-

.0,

n=0,z=4—4
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k4
0
J (“) dz = Pt 8
+2s on 7=0 on n=0,z=4-5
)
5uiv) auii
_ dn = .0,
!(55 &=0 o¢ E=0,y=4-4
5
6uv) ou.
= dp=t .é.
!(66 ¢=0 86 £=0,y=~%4+3

Considering the fact of K » 1, we expand ¢
and C, as follows:

d=80*K*+6**K'+...,

= _1_ * K# *%
Cl—Re{CK + C** + ...} 57
where C*, C** and 6%, 6** are the coefficients
of expansion.
Substituting equations (55)-(57) into equation
(52), and equating the terms of the same order
for K~*, we get:

(202 6%7 + ) ox =4 CF (58)

5 5¥52C*? 6% + ) + 0¥ [ {ACHSHCHo*
+ CFra%) — 148 5} — 11 5%(2C*26%2 + 1)

= $(48CH2CH* — B2 C¥35%). (59)

By means of the same procedure, substituting
equations (55)+(57) into equation (53), we obtain
equations (60) and (61).

§Cr2o%? =242 (60)
132 C*5*(C*5** + C**(S*)
— s C*26%3 = — 1888 5% (61)

From equations (58) and (60), 3* and C* are
solved as follows:

5% =2998,  C* (62)

Substituting the above result into equations

(55)H57), we obtain the following results as the
first approximation for C,, C,, A and é.

C,, = 1-541 K*/Re

= 1-541.

(63)
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C,y =10 (64)
A, = 2668 K*/Re (65)
5, =2998 K%, (66)

Substituting equation (62) into equations (59)
and (61), we obtain the expansion coefficients
O0** and C**.

O** = — 9385, C** =02703. (67)

Substituting equations (62) and (67) into
equations (55}(57), we obtain the following
results as the second approximation for C,, C,,

Aand J.
1

Ciy = oo {I'S4LK* + 02703} (68)
Chpm L (69)
1 — 3996 K%
P S (70)
1 —7126K*
5, =2998 K+ -9385K""  (71)

We define the resistance coefficient for a
straight channel as 1, and it is well known that
Ao equals 28-45/Re for a laminar flow. By non-

dimensionizing 1, and A, by A,, the values of

A, and A, are given by equations (65) and (70),
respectively, and we obtain the following results:

A
“1 = 009378 K* (72)
o
A, 009378 K*
(73)

bo 1 - 7T126K*

2.2. Analysis of the temperature field

We consider a fully developed temperature
field under the condition of a constant wall
temperature gradient. The surface temperature
of the wall is expressed as T, = tR6, where 1
is a wall temperature gradient. Neglecting the
higher order terms of d/R, we can write the
energy equation as follows:

oT 1 <BZT+62T) 74
ay YT TPrre\oy? | 022/
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2.2.1. The temperature distribution in the core
region. We divide the temperature field into
two regions, the core and the thermal boundary
region. In the core region, convective heat
transfer due to the secondary flow components
predominates, and the effect of heat conduction
can be neglected. The effect of heat conduction
must be considered only within the thermal
boundary layer along the wall.

By substituting the velocity distributions in
the core region, given by equations (5)(7). into
equation (74), and neglecting the conduction
terms on the right hand side of that equation,
we obtain the temperature distribution in the
core region.

C, A,

TO)=Cs+ ="y + —5y~ 75
my) = C; ¢’ iy (75)
In the above equation, C, is an unknown con-
stant and C,, C, and 4 are given in equations

(63-65).

2.2.2. The entropy production balance in the
thermal boundary layer. We assume that a
thermal boundary layer exists along the wall
and the thickness of the layer, d4, is constant.
Then we divide the thermal boundary layer into
five characteristic regions as shown in Fig. 4

z

2 e

Core region

: \ ] '8'7"_":

F1G. 4. The thermal boundary layer along the wall.

Thermal boundary layer

and consider the entropy production balance in
each region. From the consideration on the order
of magnitude, it is known that the entropy
production in region iv and v can be neglected
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compared with those in the other regions. There-
fore, we confine our analysis to regions i, ii and
iii in the remainder of this section. It is also
known from the consideration on the order of
magnitude that the second term on the left
hand side of equation (74), that indicates heat
transfer due to temperature gradient in the flow
direction, can be neglected compared with the
other terms.

Based on the above consideration, we can
write the energy equation in the thermal
boundary layer as follows:

Equation in regioni{y =4 ~ )

8T + aT 1 éT
— P —_— TS ———
! an Yz " PrRe on?
Equation in region ii (¢ = § — 2)
oT orT 1 T
Do — W = o
dy &  PrRe ¢
Equation in region iii (7 == % + y)
oT + oT 1 2T
— W = —
v on dz PrRedn?

Multiplying ¢ach boundary layer equation by
T and then integrating each region and adding
these equations, we obtain the relation that
indicates the balance of the entropy production
in the thermal boundary layer.

V1 T - 8 = T4+ ) de
° § 48

sl 1628 ) o

0 iii
-8 &

S fetmeed o

The term on the left hand side represents the
entropy production due to heat transfer caused
by the secondary flow components and the
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term on the right hand side the entropy produc-
tion due to heat conduction. Equation (76)
indicates that these entropy productions balance
each other in a steady state.

In the case of & < J;, the integration in
equation (76) must be performed from 0 to §,
instead of 0-8. But, since we neglect the higher
order terms in the entropy production balance
equation, it is still possible to use equation (76)
even when Jy is larger than o.

Considering the heat balance between two
cross sections, the distance between them being
{(R/d) d0, we obtain the following equation:

8
é i 5?;1:
1)+ (2). )
[
T
ii
+ j (“ég)g:g dy] (77)

—3+5

The left term of eqi;xation {77) represents the
temperature rise in the flow direction and the
right term the heat flux at the wall.

Two equations for two unknownsexist, C; and
oy ; therefore, we can solve these if the tempera-
ture distribution in the thermal boundary layer
is known. In the following section, we solve {,
{ = 64/d, instead of o

z.-
2 PrRe

223. The temperature distribution in the
thermal boundary layer. (i) The case of { 2 1
Since &5 is larger than §, the temperature distri-
bution in the core region, given in equation (75),
is valid at the edge of the thermal boundary layer.
Therefore, we assume that the temperature
distribution can be expressed by polynomials of
7 and ¢ which satisfy the boundary conditions
given at the wall and at the edge of the thermal
boundary layer.

(a) The temperature distribution in region i.
Boundary conditions for T, are given as
follows:

=0 at ’7“—“09 ﬂme(%"'éT)a
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9T, _ _ dT,
on dy

The first condition means that 7; is reduced
to zero at the wall and the second means that
T; and its gradient are smoothly connected with
their values in the core region at the edge of the
thermal boundary layer.

Considering the boundary conditions, we
assume the distribution of T; by a polynomial of

n as follows:

2
T T - ol - (51)}
T T

C, A
L 4=
+ 5T {Cl C% (2 T)}

Ar-@)

(b) The temperature distribution in region ii.

Boundary conditions and the distribution of
T;; are given as follows:

Boundary conditions;

Ti‘i=0 at €=0,

at 5 = Or.
y=4%—dr

o,
=0 at

Li=T.0). - :

¢ =

Distribution of T}, ;

1n>

¢ &\?
e b(0)- ()

(c) The temperature distribution in region iii.
Boundary conditions and the distribution of

T;;; are given as follows:
T;;=0 at =0, T = T(—3 + d7),
0Ty _dT,

at n =,

611 dy \y=-—-}+61~

n 7\’
T = T~ + M{z (;) - (;) }

C A
N
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(ii) The case of { < 1

As oy is smaller than §, it is impossible to ex-
tend the temperature distribution in the core
region to the outer edge of the thermal boundary
layer. Boundary conditions for the temperature
distribution are given at the edge of the velocity
boundary layer and at the wall. Conditions at the
edge of the velocity boundary layer are so given
as the values of the temperature distribution and
its gradient connect smoothly with their values
in the core region. But at the wall, besides the
condition of T = 0, we must consider another
condition; that is, the temperature gradient
must be the same magnitude as the value for the
caseof { > 1.

(a) The temperature distribution in region 1.

Boundary conditions and the distribution of
T; are given as follows:

oT, 2
:O’ l=¥-Ti“(’)~ t :0
51’/ 67‘ m(2 ) a V]
oT; dT,
T, = TG — o), =——" atyp =20
an dy ly=s-
2(n 1> n’
T =TG-z -25 +=
i m(Z ){C<(§ 52 53
2 3
] /] Cz A .
+135 -2 +a£\+“i—o}
(5 53)} C, Cf(z )

2 3
x <% - Z-3> (81)

{(b) The temperature distribution in region ii.

Boundary conditions and the distribution of
T; are;

oT; 2

i 8¢ or

0Ty

L=T0). =0 a

2 2 ¢
T = T {E(E zgi + 53)

2 z3
+ (3%5 — 2%)} (82)

Tm(y ) at é = 0»

E=6
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(c) The temperature distribution in region iii.
Boundary conditions and the distribution of
T;; are;

Tu=0, Hi_27( 144 at n=o,
on Or
0T, dT,
T;ii = Tm —l+ 5), e =" at =5
(=3 on dy y=—4+3 d

2

2 3
Tii= T—1 + 5){3 (% - Zg-z + %)

2.2.4. Solution for C; and (. (1) The case of
{ = 1. Substituting equations (78)+80) into
equations (76) and (77), and neglecting the
higher order terms, we obtain the following
equations:

A g 1 1
CZ(C3+§c‘g>f§ s~ PrRe

1,4 371> 1/C,\?
2C3+5C—+— =] +3(=2 4
Peegraa) +16) o
g 1 1 1
l=——uCs+ —-—=].
C(SPrRe( st 12cf>
Substituting the values of C,, C,, A and 4,

which are given in equations (63)(66), we obtain
the solution for C; and (.

C, =0225ReK*
{ = 0851 Pr!

(85)

(86)
(87

The above results are valid for the range of
the Prandtl number smaller than 0-851.

(ii) The case of { < 1.

Substituting equations (81)4(83) into equa-
tions (76) and (77), and neglecting the higher
order terms, we obtain the following equations:

cc+’1 _4 1 4 3+9
2\7? T 8C%2) 15 6PrRe \® ¢

1799

L4 374\ 1(C\

s LA 3 AN 1[G 88
3 1 i 2

1 =TT C 12 c2J 89
(o PrRe(3+12 Cf) ®

Substituting equations (63)-(66) into the above
equations, we obtain the solutions for C, and (.

The relation between Pr and F(Pr)is indicated
in Table 1.

Table 1. The relation between Pr and F(Pr)

Pr 0-851 1 3 10 30 0
F(Pr) 1 0739 0441 0262 0253 0250
¢ = F(Pr) (90)
0375 Pr{ — 0:0937) R
c, =" 'CK . JRe o1

2.2.5. The Nusselt number. The Nusselt num-
ber is defined by equation (92)
qd
KT, — Toid
where ¢ is the heat flux at the wall and is written

as g = (DktPrRe. T, is the mixed mean
temperature defined by the following equation:

Nu = 92)

a2 42

1
Tmix = d2

TUdYdZ.

-d/2 —dj2

A

Substituting the above definitions of g and
T ..i, into equation (92), we can write the Nusselt
number as follows:

Pr Re 9
Nu = 33 (93)
4 { | Tudydz
-1 -1
In order to calculate the first approximation
of the Nusselt number, the denominator of

equation (93) might be written as

3 3 3 3
[ [ Tudydz= [ | T()u.)dydz.
“1 % <3S4
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This approximation means that we neglect
the existence of the boundary layer. Substituting
equations (6) and (75) into the denominator of
equation (93), we obtain the following result as
the first approximation for the Nusselt number.

N PrK#
YT 4{0375 Pr{ + 00468}

{94)

Defining the Nusselt number for a straight
square channel under a condition of constant
wall temperature gradient by Nu, (Nu, = 3-63)
and non-dimensionize Nu, by Nu,, we have

Y. MORI, Y. UCHIDA and T. UKON

640

+ { f (u; T, + wy; T) dn dz
0 b
3-0 8
+ ‘ f u; T;; dy d£].
~§+80

Neglecting the higher order terms which are
contained in the boundary layer correction
terms, we can calculate the value of the above
equation. The distributions of u;, uy, u;; and
T;, T;, Ty are given by equations (40), (46), (51)
and (78)+80), respectively. The result of the
second approximation is given by equation (96)

Nu, 00689 K* 96)
Nu, 0375 + 0-0468) 1199 0375L + 0187) (L SC— 1
Pr K* Pr J\3  30¢? )

Nu, 0-0689 K* where { in the above equation is calculated by

Nu, 0375 + (0-0468/Pr)” ©3)

According to the value of the Prandtl num-
ber, we must use equation (87) or (90) to calculate
the value of { in the above equation,

The second approximation for the Nusselt
number can be obtained from the consideration
of the existence of the boundary layer.

(i) The case of { = 1 (Pr < 0-851).

Considering the existence of the boundary
layer, we write the denominator of equation (93)
as follows:

+ 4 +-06 405
{ § Tudydz=2 | | T().u,y)dydz
-3 —% 0 -4+

[ 4. Sl 186 5

+200 | unm). Tdpdz+ [ u(y)
50 —5406 B

-8

[ u,(m. T;;dndz

0

1)
x Tidydé + |
3

equation (87).

(i) The case of { < 1 (Pr > 0851).

We write the denominator of equation (93) as
follows:

3+ 3 +-8 39
I [ Tudydz=2 [ [ T uydydz
Sy 3 0 -+s
+ 13-4 -4+ 45
+2[ | | Twdydz+ | | Tuudydz
PRAPI Sy 0
-6 3
+ ‘ ‘ T, u; dy dz].
—i+s4-6

The distribution of T, T;; and T;;; are given by
equations (81){83). The result for this case is
given as follows:

. £
e ( e 0187)/17 1 ®n
Nug 00468) 1199f O 17 )
i0375 C+— 0~ K 0375 — ——l 35 07
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where we must use equation (9) to calculate the
value of {.

3. EXPERIMENT

A schematic drawing of the experimental
apparatus is shown in Fig. 5. Air flow in a curved
square channel, having dimensions of R = 267
mm and d = 20 mm (d/R = 0-0714), is used and
the distributions of uand T of the fully developed
flow are measured under the condition of a
constant wall temperature gradient. The Nusselt
number is obtained by use of these distributions.

The upper and the lower walls of the channel
(see Fig. 5) are of iron plates with the prescribed
dimension, and the inner and the outer walls are
of brass plates. These four walls are heated by
independent electric heaters so that a constant
wall temperature gradient is maintained. The
surface temperature of each wall is measured by
Cu-Co thermocouples soldered to it. The
measured circumferential and flow (axial) direc-
tional wall temperature distributions are shown
in Fig. 6.

The velocity distribution is measured by a

constant current thermistor bead anemometer
whose performance between the resistance and

Blower

:. m_ /,/,, Mica plate
BN Upper wall >

—4 13 Inner outery]

C N wallt wall -

. Lower wall -} —Insutator

[ F .

—

Thermocouple

Cross section of the curved channel

Settling chamber

/ L Electric heater

1801

8= 220°

160%

10Q°

| I ]

Upper Outer Inner L ower
wall wall wall wali
90 —

4] 70

50
T» 049°C/cm

30—

| ] | j
40 100 160 220

8, degrse
F16. 6. Wall temperature distribution.
the wind velocity is calibrated in advance.

Because of the strong temperature dependence
of the thermistor resistance, the velocity distribu-

Curved channel

/ Measuring
/ position

FiG. 5. Experimental apparatus.
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2:0

d
7 =0-0714
|
-05 o] 05
Z
e K= 28 o K= 550
4 51 a 1301
[ ] 08 o 2517
[} 25!

F1G. 7. Distribution of # at y = 0.

e K= 28 <] K= 550
'y 51 a 1301
[ ] o8 =] 2517
[ 25l

Fi1G. 8. Distribution of w at z = 0.

tion is measured under the condition of zero wall
heat flux. The temperature distribution in the
channel is measured by a Cu—Co thermocouple
of 0-1 mm dia. Lead wires of the thermistor and
the thermocouple are in an L-shape support so
that the results may not be influenced by a
measuring hole.

3.1. Experimental result

3.1.1. The flow field. The axial velocity distri-
bution, u, is shown in Fig. 7 and 8. The practical
flow field is three dimensional due to the second-
ary flow, and the velocity of (u* + v? + w?)! is
measured by the thermistor anemometer. How-
ever, considering u > v, w, this value may be
approximated by u without a serious error.

Figures 7 and 8 respectively indicate the
dependency ofuat y =0on z and thatatz =0
on y. The maximum value of u is displaced to the
centrifugal force direction and the dependency
of u on z is weakened with an increase ol the
Dean number K. For sufficiently large K, these
figures show that the gradient of u indicates a
rapid change near the wall of the passage. These
experimental results mean that we may assume
the existence of the velocity boundary layer along
the wall in the theoretical analysis. The dotted
lines in figures represent the distribution of
u,(y) due to equation (6).

The relation between the resistance coefficient,

I

| | [
‘02 2 4 -3

1.
8

|°3 2 4 6 8 |o4

K

FiG. 9. The resistance coefficient.
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Ai/4o and A,/4, and the Dean number K is
indicated in Fig. 9. The open circles in the figure
are experimental results obtained by H.
Ludwieg [4] for a square channel whose R/d
equalled 5-67. The figure indicates that analytical
and experimental results are in good agreement.
The solid circles in the figure indicate experi-
mental results having Reynolds numbers larger
than 80 x 10° and these are data in a turbulent
region. The transition from a laminar to a
turbulent flow is measured by a hot-wire. In this
experiment, the transition occurs at K = 850
(Re = 3200) and the value of the critical
Reynolds number is smaller than that measured
by H. Ludwieg, i.e. about 8000. The large turbu-
lent intensity at the entrance of the curved
channel in our experiment may be responsible
for this discrepancy.

The dependency of # on K is weakened after
the transition and the velocity distributions
hardly deform with an increase in K.

3.1.2. The temperature field. Corresponding
with the velocity distribution data, the tempera-
ture distributions at y = 0 and z = 0 are indi-
cated in Figs. 10 and 11, respectively. The same

R Pr=0-71
-05 [e) 05
Z
e K= I80 o K= 876
389 a 1507
[ ] 613 o 2550

Fi1G. 10. Distribution of Tat y = 0.
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7(Z=0)

60

Pr=07

e K= 180 o K= 876
'y 389 [ 1507
» 613 a 2550

FiG. 11. Distribution of T at z = 0.

tendency as in the flow field is observed and the
validity of the boundary layer approximation is
also assured. As mentioned in the preceding
section, the distribution of u is hardly deformed
with a change of K when K is above 850.
Therefore, the distributions of T in the core
region are theoretically expected to be similar
regardless the value of K. However, the experi-
mental results obtained and shown in Fig. 11 are
quite different from the expectation. This dis-
agreement is presumably caused by an actual
experimental condition which might be contrary
to the condition of the constant circumferential
wall temperature at the cross section, adopted in
the theory.

3.1.3. The Nusselt number. The comparison
between the analytical and experimental results
on the Nusselt number is shown in Fig. 12. The
experimental value of the Nusselt number is
obtained by use of equation (93). Measured
distributions of u and T are substituted into the
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denominator of equation (93) and this value is
calculated by the graphical integration.

20 .
4
Equation(98) _
0 4
sl Nu, 'y
Mz
3l gl it
Qli © M,
B d
3 7 =0-07i4 Pr=0Ti
o o Laminor flow
« Tubulent flow
i ; s R !
‘02 2 3 4 ) B 103 2 3 4 i3
K

F1G. 12. The Nusselt number.

Open and closed circles in the figure are the
experimental results in laminar and turbulent
flow regions, respectively. As is shown in the
figure, experimental data in a turbulent region
can be correlated by equation (98).

Nu

Uy

= 00208 K*.(1 + 0287 K™¥%). (98)

Equation (98) is based on the analytical result
of a turbulent flow heat transfer in a curved
pipe [5], where the hydraulic diameter is used
as the reference length instead of the pipe
diameter.

4. CONCLUSION

Considering a fully developed laminar flow
and temperature fields in a square cross sectional
curved channel under the condition of a constant
wall temperature gradient, we obtained the
following conclusions:

Y. MORI. Y. UCHIDA and T. UKON

(1) Due to the affect of the centrifugal force, a
secondary flow appears in the curved channel.
The intensity of the secondary flow increases
with the increase of the Dean number
K(K = Re../d/R), and it is possible to consider
the existence of the secondary flow boundary
layer for the range of the large Dean number
when the effect of curvature of the channel
cannot be neglected.

(2) We may divide the flow and the temperature
fields into two regions, the core and the bound-
ary layer region, and obtain analytical results
considering the balance of kinetic energy and
entropy production in the boundary layer.

{3) We obtained the resistance coefficient and
the Nusselt number for a flow in a square cross
sectional curved channel and indicated that
these values were seriously increased by the
affect of the secondary flow.

(4) Experimental results for the velocity and
the temperature distribution were obtained and
the Nusselt numbers were calculated using
them. Analytical and experimental results were
compared with the theoretical prediction and it
was found that they were in good agreement.
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CONVECTION FORCEE THERMIQUE DANS UN CANAL COURBE A SECTION DROITE CARREE

Résumé—On a obtenu sous la condition d'un flux thermique pariétal constant des résultats analytiques
et expérimentaux pour un écoulement laminaire entitrement développé dans un canal courbe & section
droite carrée. Un écoulement secondaire dd a la force centrifuge apparait dans le canal et les champs de
vitesse et de température sont fortement influencés. Dans le cas d’un écoulement secondaire intense, on a
introduit le concept d’une couche limite de P’écoulement secondaire. On a résolu sur la base du bilan
d’énergie cinétique et d’entropie les équations du moment et de I'énergie dans la couche limite. On obtient
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analytiquement et expérimentalement le coefficient de résistance et le nombre de Nusselt et on montre
qu’ils sont en bon accord.

ERZWUNGENE KONVEKTIVE WARMEUBERTRAGUNG IN EINEM
GEKRUMMTEN KANAL MIT QUADRATISCHEM QUERSCHNITT.

Zusammenfassung Bei einem gekriimmten Kanal mit quadratischem Querschnitt wurde der Wirme-
dibergang fir den Fall des konstanten Wandwirmestroms fiir vollausgebildete laminare Strémung
analytisch und experimentell untersucht. Verursacht durch die Zentrifugalkraft bildet sich eine Sekundiir-
stromung im Kanal aus, die die Hauptstromung und das Temperaturfeld entscheidend beeinflusst. Im
Fall einer intensiven Sekundirstromung wird fiir die Untersuchung das Grenzschichtmodell fiir die
Sekundirstrdmung angewandt. Die Bewegungs- und die Energiegleichung fiir die Grenzschicht werden
mit Bilanzen fiir die kinetische Energie und die Entropieproduktion geldst. Der Widerstandskoeffizient
und die Nusselt-Zahl werden analytisch und experimentell bestimmt und stimmen gut {iberein.

BLIHY:KIEHHAflI KOHBEKIIUA TEINIA B KPUBOJUHENHOM
KAHAJIE KBAAPATHOIO CEUEHUA

Aunoranun—{000maTCH PesYNBTATH ZHANHTHUECKOTO U SKCHEPUMEHTAIBHOTO NCCHeNoBa-
Hui TerwIcoGMeHa IpH NONHOCTHI0 PASBUTOM NaMUHADHOM TEYEHMH B KPUBOJIMHEAHOM KaHawe
KBajIpaTHOrO CeYeHMA B YCIOBMAX NOCTOHHHOPO TEINIOBOTO NOTOKA HA CTeHke, Buarogaps
UHeHTpOGeKHOM CHIe B KaHAJe BO3HMKAET BTOPNYHOE TEYEHUE, [PUYEM IIOJH CKOPOCTH M
TEMOEPATYPH CIIIBHO BIMAIOT APYT Ha Apyra. [{1f MHTeHCHMBHEIX BTOPHYHEIX TedeHHA BBOZUT-
€A HOHATHE NOIPAHAYHOIO CIIOA BTOPUYHOTO TeYeHMT. YDPABHeHMA IBUIEHUA U 9HePTUM B
NOTPAHNYHOM ClI0€ DENIAoTCA Ha OCHOBE §aJaHCA KUHETHYECHON HHEPrHM M IPOUIBONCTBA
SHTPONMN. AHATMTHYECKHM U SKCTIEPMMEHTANbHEM NYTeM Nonyvyend xosddunment rupponu-
HaMu4ecKoro conpoTHelenua u umcao Hycceasra. Koucratupyerca xopomee coriacue
TEODPHH C OIHTOM.
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