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Abstract-Analytical and experimental results for a fully developed laminar flaw in a curved channel with 
a square cross section are obtained under the condition of n constant wall heat flux. A secondary flow due 
to the centrifugal force appears in the channel, and the flow and the temperature fields are strongly in- 
fluenced. In the case of an intense secondary flow, the concept of the boundary layer of the secondary flow 
is introduced. The moment and the energy equations in the boundary layer are solved on the basis of kinetic 
energy and entropy production balance. The resistance coefficient and the Nusselt number are obtained 

analytically and experimentally and it is show that they are in good agreement. 

NOMENCLATURE (Y, 4, ( r, z)/d. 

y-directional velocity component 
in the core region ; 

Greek symbols 

U,(y ==o,z =O); 
T,(y = 0,z =O); 
specific heat at constant pressure ; 
side length of the cross section; 
heat conductivity ; 
Dean number, ~~~~/R ; 
NusseIt number, q~~kAT : 
pressure ; 
P = a’/pU2; 
Prandtl number, pvCp/k; 
heat flux at the wall ; 
radius of ~u~atu~ of the 
channel ; 

s TP 

Reynolds number, Ud/v ; 
fluid temperature; 

(T, - T&d ; 
wall temperature ; 
temperature difference between 
the wall temperature and the 
mixed mean fluid temperature ; 
velocity component in the (0, r, 
Z)-direction ; 

P, 
V. 

non-Dimensions velocity bound- 
ary layer thickness (non- 
dimensionized by 6) ; 
nondimensional temperature 
boundary layer thickness; 

= l/Z - /Yi. 
: = l/2 - fzl; 
r = S,/6; 
wall temperature gradient (con- 
stant) ; 
resistance coefficient, ~P/~~/~ a 
ae; 
density ; 
kinematic viscosity. 

Subscripts 
6 core region ; 

0, 

characteristic region in the boun- 
dary layer along the wall ; 
straight channel. 

1. WTRODUCTION 

mean velocity in the @-direction ; 
(U, v, W/V 

&WED channels with rectangular cross sections 
are widely used for heat exchange and cooling in 

co-ordinate system (see Fig. 1); many industrial fields, for example, cooling of 
1787 
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hollow conductors in cryogenic engineering and 
it is important to obtain basic knowledge about 
their performance in heat transfer. In this 
report, the analytical and the experimental re- 
sults for a laminar flow and temperature fields 
in a curved channel, of a square cross section, are 
presented. In a flow in a curved channel, centri- 
fugal force acts on a fluid as a body force and a 
secondary flow is caused by this body force. The 
flow and the temperature fields are seriously 
affected by this secondary flow. 

Many experimental [l, 21 and analytical 
results [3] on pressure loss and heat transfer for 
a flow in a curved circular pipe have already been 
published. The momentum and energy equations 
in a boundary layer of the secondary flow, which 
exists along the wall of the curved pipe. were 
used to analyze the flow and the temperature 
fields. However, it is difficult to use the same 
method to analyze the flow and the temperature 
fields in a square curved channel. 

At the central part of the flow passage, when 
the intensity of the secondary flow is strong, it is 
possible to neglect the affect of the viscosity 
and heat conduction compared with a stress 
analogous to the Reynolds stress and heat 
convection due to the secondary flow com- 
ponents. The affect of the viscosity and heat 
conduction are confined within a thin layer along 
a wall of the passage, where the intensity of the 
secondary flow is weakened. Because of this, 
we can consider the existence of the boundary 
layer along the wall of the passage for a flow 
which is strongly affected by the secondary flow. 
In the following analysis, the flow and tem- 
perature fields in the curved channel are divided 
into two regions, that is, the core region about 
the central part of the passage where the affect 
of the secondary flow is dominant over the 
viscosity and heat conduction and the boundary 
layer region along the wall where the affect 
of the viscosity and heat conduction cannot be 
ignored. The existence of such a boundary layer 
is confirmed by experimental results. The kinetic 
energy and entropy production balance equa- 
tions in the boundary layer, which are obtained 

by use of momentum and energy equations, are 
used to solve the flow and the temperature fields. 
This method has a wide applicability and can be 
applied to a flow in a channel which has a non- 
circular cross section. 

2. ANALYSIS 

2.1. Analysis of the velocityfield 
The following analysis is valid for a fully 

developed laminar flow in a square cross sec- 
tional curved channel, whose wall temperature 
gradient is kept constant. All physical properties 
are assumed to be constant. 

As we assume that physical properties are 
constant, the velocity and the temperature fields 
are independent and we can solve the tem- 
perature field by using the results of the velocity 
field. 

z 

FIG. I The co-ordinate system. 

As is indicated in Fig. 1, for a flow in a curved 
channel, the secondary flow, which consists of a 
pair of longitudinal vortex rolls, appears in the 
passage due to the affect of the centrifugal force. 
The intensity ofthe secondary flow depends upon 
the value of the Dean number K(K = Re,/d/R). 
In the case of a small Dean number, the intensity 
of the secondary flow is weak and the affect of the 
viscosity must be considered in the whole cross 
section of the channel. The dissipation of the 
kinetic energy due to the viscosity cannot be 
neglected in the core. 
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With the increase of the Dean number, the 
intensity of the secondary flow becomes strong. 
For such a state, the affect of the viscosity can 
be distinguished only in a thin layer along the 
wall and it is possible to neglect its influence in 
the core. Therefore, we consider the existence of 
the boundary layer and assume that the effect of 
the viscosity is confined in that layer. 

As is indicated above, for the flow with an 
intensive secondary flow, it is possible to con- 
sider two different regions ; the core region and 
the boundary layer region. In the following 
sections, we analyze each region and obtain the 
solution for the flow field. 

2.1.1. Velocity distribution in the core region. 
Indicating the values in the core region by 
suffix m, and neglecting the terms that indicate 
the effect of the viscosity, we obtain the following 
equations for the core region : 

au, av, 4 _ ap, -- v,%+ wmz-(R/d) ay (1) 

au au 
v,A+ w,rn& ay aZ 

(2) 

aw, awm ap, 
v,--+w,---=-- 

ay az aZ (3) 

where the higher order terms of d/R are neglected 
in the consideration of the fact of d/R 4 1. 

Equations (l)-(3) are the momentum equa- 
tions and equation (4) is the continuity equation. 
The particular solution for the above equations 
is obtained if we assume that the secondary flow 
in the core region can be expressed by a uniform 
stream which flows from the inner to the outer 
part of the curvature. The velocity components 
in the y-z plane for such a uniform stream are 
given as 0, = C, (C, is constant) and w,,, = 0. 
Substituting these relations into equations (1) 

and (2), we can solve u,,, and P,. l‘he results are 

given in the following equations. 

v, = c, 

1 
&PI(Y) = c2 + CY (6) 

1 

w, = 0 

P”(Y) = - %IB 

(8) 

where C, and pa are constant. 

2.1.2. The kinetic energy balance in the bound- 
ary layer. On the assumption that a velocity 
boundary layer of a constant thickness 6 exists 
along the wall, we obtain the relations that 
indicate the balance of the kinetic energy inside 
the boundary layer. Error caused by this assump- 
tion might be serious near the point where the 
secondary flow separates from the wall (y = 3, 
z = 0), but this local error can be neglected in 
the calculation of the resistance coefficient. 

We divide the velocity boundary layer along 
the wall into five characteristic regions as shown 
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FIG. 2. The velocity boundary layer along the wall. 

in Fig. 2 and have the boundary layer equations 
in each region considering the fact of d/R & 1. 

Equations in region i are (q = 3 - y) 

U2 ap+ - +LT!=o 
af7 wd) Re 812 (9) 
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. . . . . . . 
The subscripts 1, u, m, IV and v in the above- 

equation indicate the values in the region 
. . . . . . . 
I, 11, ~1, IV and v, respectively. Terms set in bold 
type are the higher order terms of 6 (6 is the 
non-dimensional thickness of the velocity 
boundary layer) compared with the other terms 
and can be neglected. The terms that indicate the 
dissipation energy in the region iv and v are 
also to be neglected, because th,- order of magni- 
tude of these terms are J2. 

The second term on the left side of equation 
(29) indicates the kinetic energy that is needed 
to accelerate the fluid in region i and the tenth 
term indicates the kinetic energy produced by 
the deceleration of the fluid in region iii. As the 
cross section of the passage and the flow pattern 
are symmetrical around the z-axis, the summa- 
tion of these terms is reduced to zero. The sum- 
mation of the fourth and the eighth term on the 
left hand side of equation (29) is also reduced to 
zero for the same reason. 

Based on the above consideration, equation 
(29) is reduced to equation (30). 

+-a 
[ 
b 

C, (I’,($ - 6) - I’,,,( -3 + S)} dz 

+-a a 

+ _ l+ d d {U2~/(R/4}ii dY dt 

+ 71 (v$)iidyd{] = 0. (30) 

-++a 0 

The first term on the left side of equation (30) 
represents the kinetic energy introduced into 
the boundary layer from the core region due to 
pressure ; the second term represents the energy 
that is required to make the fluid flow in region 
against the centrifugal force ; the third term 
represents the energy dissipated by the vis- 
cosity. Equation (30) indicates that the secondary 
flow is maintained by such a simple energy 
balance mechanism that it absorbs the kinetic 
energy from the core region and loses that 
energy because of the body force and the 
viscosity. 

The kinetic energy balance equation in the flow direction (O-direction) becomes : 

d *-a 
’ !,.I uidtldz+ iiuivdVd5 + _~~6~.iidydt + ~~~“dqdg + ~t6auiiidrldz 1 
B 
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+ 

00 00 

Here, it must be mentioned that the following two relations are valid in regions iv and v, 
respectively. 

And as the cross section is symmetrical about the z-axis, the relation of w’i = - yii must be 
considered. 

Equation (31) is simplified to equation (32) by using these relations. 

a -f-a t-s 6 

1 d fui + Uiii> dVdz + _j+$ b Uii dYdt 
1 
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The first term on the left side of equation (32) in the core region and the value of the 8- 
represents the kinetic energy from the pressure directional velocity component at the center 
gradient in the &direction. The second term of the passage, respectively. R is the resistance 
indicates that the work done by the pressure coefficient and S is the non-dimensional thick- 
gradient in the core region is introduced into the ness of the velocity boundary layer. If the velo- 
boundary layer by means of -uu. The third city distributions in regions i, ii and iii are known, 
term represents the energy dissipated by the these unknowns are solved by use of equations 
viscosity. (30) (32), (33) and (34). 

The condition for the constant flow rate is 
written as follows : 2.1.3. The velocity distribution in the boundary 

d +-a +-a d layer. (i) The velocity distribution in region i. 

t = g j (ui + aiii> dV dz + _l+d 1 aii dY d5 We consider a rectangle ABCD in region i as 

+-a )-a 
shown in Fig. 3. The flow rate of the secondary 

+ _& j u,ti)dydz. (33) G 

The first and the second terms on the right 
hand side of equation (33) represent the flow 
rate in the boundary layer, and the third term is 
the flow rate in the core region. The flow rate in 
regions iv and v can be neglected because their 
orders of magnitude are 6’. 

Considering the balance of force between two 
cross sections in the axial direction, the distance 
between them being (R/d)dB, we obtain equa- 
tion (34). FIG. 3. The velocity distribution in the boundary layer. 

+ + 

flow that flows into the boundary layer through 
the boundary CD must cross the BC plane. 
Because of the continuity of the flow rate of the 
secondary flow, we have the following equation : 

C,Z = i Wi d?. (35) 

Boundary conditions for wi are given by 
equation (36). 

(34) 

wi = 0 at q=O 

Wi, = C.5 = () at q = 6. 
all 

(36) 

The left hand term of the above equation Equation (36) indicates that Wi must reduce to 
represents the pressure drop, and the right hand zero at the wall surface. At the edge of the 
term the shear stress at the wall surface. boundary layer, Wi and its gradient are smoothly 

Four unknowns exist; C,, C,, L and 6 C, and connected with their values in the core region. 
C, indicate the intensity of the secondary flow Here we assume that the distribution of Wi can 



1794 Y. MORI. Y. UCHIDA and T. UKON 

be expressed by a polynomial of q, that satisfies 
equations (35) and (36), as follows : Vii =2(66 - 6)5 + %(A96 + 12)5’ 

Y =TCrZ{(i) -2(i)‘+ Q”). (37) + $(46 - 6)t3. (43) 

By use of equation (37) and the continuity 
equation of --auJQ + aY/‘aZ = 0, we obtain 

The distribution of yi that satisfies the con- 

the distribution of vi. 
tinuity equation of av,Jay - 8 wii/a< = 0 and 

boundary conditions of wii = 0 at t = 0, 6 is 

12 
vi =Scl 

given by equation (44). 
(38) 

yi = 0. (44) 

This distribution satisfies the condition at the 
edge of the boundary layer that Ui and its 

Boundary conditions and the distribution of 

gradient smoothly connect with the core region 
Uii are given by equations (45) and (46). 

distribution, u,,, = C,. 
The distribution of Ui is expressed by equation ‘ii = ’ at 5 = o, 

(40) so as to satisfy the boundary conditions au,, 
given by equation (39). uii = u,(v), _ = 0 at 5 = 6 

ui = 0 at q = 0, Ui = U,(~ - 6), 

(39) 

Uii = (Cz +;YJj2(;) - (;T]. :T:: 

(iii) The velocity distribution in region iii. From 
the continuity of the secondary flow, we obtain 
equation (47). 

1 J. 
X y/ - - c2 + F 

62 ( ) 
q2. (40) 

1 

d 

g(- Wiii)dn= C,Z. (47) 

(ii) The velocity distribution in region ii. As we 
assumed that the thickness of the boundary 

The boundary conditions for Wiii are given by 

layer was constant, the flow rate of the secondary 
equation (36). From equations (47) and (36) the 

flow that flows into the boundary layer through 
d’ rstribution of wiii is obtained. 

the plane DF (see Fig. 3) should pass over the 
plane GH. This condition is expressed by wiii = - y = 
equation (4 1). ;C,z {-(2;) + 2(;)2 -(x)3. (48) 

(~ - 6) C, = 1 (- 2)ii) d5. (41) 
We express the distribution of Viii so that it 

The distribution of vii that satisfies equations satisfies the continuity equation of aUiii/a? + 

(41) and (42) is given by equation (43). a WiiilaZ = 0 as fOllOWS 1 

vii = 0 at 5 = 0, Viii .zz vi = 

43%. 

vii = cl, atr 2~0 at (~6 (42) ;cr &$ - $13 + & 
{ 1 

. (49) 
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t 
The boundary conditions and the distribution 

of Uiii are given by equations (50) and (51). 
dz I hii 

* atl q=O,z=f-6 
.6 

Uiii = 0 at v = 0, Uiii = U,( -3 + 6), d 
&ii du, hii 
-=- 

a? dy y=-++a 

at q=S (50) 
0 

dV + ag t=o, Y=3_a’ 6Y 

q2. (51) 

2.1.4. Sd~ti~n for C,, C2, 1, 6. Substituting 
Considering the fact of K % 1, we expand 6 

the velocity distributions given in section 2.1.3 
and C, as foIIows: 

into equations (30)-(34), we obtain the following 6 =6*K-f + 6**K-’ + . ..) 

relations : 

&X:+;(g-J’(;-6)lj 

Cl =&{c*K’+ c** + . . .} (57) 

where C*, C** and 6*, a** are the coefficients 
of expansion. 

Substituting equations (55)-(57) into equation 
(52), and equating the terms of the same order 

x 
i 

3;(286” - 376 + 16) (52) for K-*, we get : 

x2 {-3+ I}-&--3 

&_ (2c*2 g*2 + y, d* = fy c*3 (58) 

$j 8**(2c*2 6*2 + Y) + a*[+$ (4c*6*(c*6** 

2 1 24 =- - 
01 6Re C, 

f -$$+; 
> 

(53) 

+ C**J*) - v a*> - #J g*(2C*Q*2 + Y)] 

= 4 (48C*2C** _ y C*38*). (59) 

+ = (5 - 6) (1 + 3 6) c, (54) By means of the same procedure, substituting 

il 14 
equations (55)-(57) into equation (53) we obtain 

__=-- 
2 Red 

c2* 
(55) equations (60) and (61). 

In the above equations, equation (54) results 
Q c*2p2 = 512 (60) 

from equation (33). As we neglected the terms y C*a*(C*a** + C**J*) 
that represented the flow rate in region iv and v 
in equation (33) instead of equation (54) we have 

_ * p2p3 = _ y p. 
(61) 

4 =3(1 -$6)C,. (56) 
From equations (58) and (60) 6* and C* are 

solved as follows : 

Equation (55) is based on equation (34) and 6* = 2.998, c* = 1.541. 
in obtaining equation (55) the following approxi- 

(62) 

mate relations were used. Substituting the above result into equations 

(55x57) we obtain the following results as the 
first approximation for C,, C,, 1 and 6. 

C 11 = 1.541 K*/Re (63) 
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c,, = 1.0 (64) 

R, = 2.668 K*/Re (65) 

6, = 2.998 K-+. (66) 

Substituting equation (62) into equations (59) 
and (61), we obtain the expansion coefficients 
P and C**. 

g** = - 9.385, C** = 0.2703. (67) 

Substituting equations (62) and (67) into 
equations (55)-(57), we obtain the following 
results as the second approximation for C,, C,, 
1 and 6. 

C,, = ; (1.541 K* + 0.2703) (68) 

1 
C,, = 

1 - 3.996 K-t (69) 

2, = 
4 

1 - 7.126 K-t 
(70) 

6, = 2.998 K -3 - 9.385 K - ? (71) 

We define the resistance coefficient for a 
straight channel as 1, and it is well known that 
i, equals 2%45/Re for a laminar flow. By non- 
dimensionizing 1, and 1, by I,, the values 01 
A, and 1, are given by equations (65) and (70) 
respectively, and we obtain the following results : 

4 
- = O-09378 K+ 
10 

(72) 

AZ 009378 K+ 
-_= 
20 1 - 7.126 K-+’ 

(73) 

2.2. Analysis of the temperaturefield 
We consider a fully developed temperature 

field under the condition of a constant wall 
temperature gradient. The surface temperature 
of the wall is expressed as T, = 7R6, where r 
is a wall temperature gradient. Neglecting the 
higher order terms of d/R, we can write the 
energy equation as follows : 

aT 

uay-“+wz= aT &&$+$).(74) 

2.2.1. The temperature distribution in the core 
region. We divide the temperature field into 
two regions, the core and the thermal boundary 
region. In the core region, convective heat 
transfer due to the secondary flow components 
predominates, and the effect of heat conduction 
can be neglected. The effect of heat conduction 
must be considered only within the thermal 
boundary layer along the wall. 

By substituting the velocity distributions in 
the core region, given by equations (5)-(7), into 
equation (74) and neglecting the conduction 
terms on the right hand side of that equation, 
we obtain the temperature distribution in the 
core region. 

n 

Tm(y)=C,+gy+&y’. (75) 
1 1 

In the above equation, C3 is an unknown con- 
stant and Cr, C2 and A are given in equations 
(63-65). 

2.2.2. The entropy production balance in the 
thermal boundary layer. We assume that a 
thermal boundary layer exists along the wall 
and the thickness of the layer, 6,, is constant. 
Then we divide the thermal boundary layer into 
five characteristic regions as shown in Fig. 4 

b y:, ::~,‘.-‘;: ‘, .‘, i, ‘. :.:.,:.: :i;‘. 
,._., ‘,...‘. :. :. ..’ ..” :_ 

: : . . 

: :’ 
: :’ 

!!’ : i. 
;. : 

‘. : : ,‘. 

core regmn __ c_ 

\ 

“,:’ y 

’ Thermal boundary layer 

FIG. 4. The thermal boundary layer along the wall. 

and consider the entropy production balance in 
each region. From the consideration on the order 
of magnitude, it is known that the entropy 
production in region iv and v can be neglected 
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compared with those in the other regions. There- 
fore, we co&me our analysis to regions i, ii and 
iii in the remainder of this section, It is also 
known from the consideration on the order of 
magnitude that the second term on the left 
hand side of equation (74) that indicates heat 
transfer due to temperature gradient in the flow 
direction, can be neglected compared with the 
other terms. 

Based on the above consideration, we can 

write the energy equation in the thermal 
boundary layer as follows : 

Equation in region i fq = +$ - y) 

1 c?“T 

- l’ aq 
-a-T-+ )+.-..-_ 

FrRe aq2’ 

Equation in region ii (r = 4 - z) 

aT aT 1 i+T 

“‘li; -“s=Gag”’ 

Equation in region iii @,I = 4 + JJ) 

Multiplying each boundary layer equation by 
T and then integrating each region and adding 
these equations, we obtain the relation that 
indicates the balance of the entropy production 
in the thermal boundary layer. 

The term on the left hand side represeuts the 
entropy production due to beat transfer caused 
by the secondary flow components and the 

term on the right hand side the entropy produc- 
tion due to heat conduction. Equation (76) 
indicates that these entropy productions balance 
each other in a steady state. 

In the case of 6 < 6, the integration in 
equation (76) must be performed from 0 to ST 
instead of O-8. But, since we neglect the higher 
order terms in the entropy production balance 
equation, it is still possible to use equation (76) 
even when Crr is larger than 6. 

Considering the heat balance between two 
cross sections, the distance between them being 
(R/d) de, we obtain the following equation : 

-ji8 
The left term of equation (77) represents the 

temperature rise in the flow direction and the 
right term the heat flux at the wall. 

Two equations for two unknownsexist, C, and 
6, ; therefore, we can solve these if the tempera- 
ture distribution in the thermal boundary layer 
is known. In the folfowing section, we solve [, 
5 = 6&i, instead of 6,. 

22.3. 7% temperature ~is~~~~~~~~ in the 
~~~~~~ ~~~~~ lqw. (i) The case of c Z 1, 
Since 6, is larger than S, the temperature distri- 
bution in the core region, given in equation (79, 
is valid at the edge of the thermal boundary layer. 
Therefore, we assume that the temperature 
distribution can be expressed by po~~omials of 
q and 5 which satisfy the boundary conditions 
given at the wall and at the edge of the thermal 
boundary layer. 

(a) The temperature distribution in region i. 
Boundary conditions for x are givea as 

fohows : 
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aJ_ dG 
aq - - dy Y=+-sT 

at r] = 6,. 

The first condition means that T is reduced 
to zero at the wall and the second means that 
T and its gradient are smoothly connected with 
their values in the core region at the edge of the 
thermal boundary layer. 

Considering the boundary conditions, we 
assume the distribution of T by a polynomial of 
9 as follows : 

,=.,-ST)+;- (;)‘I 

+ & 

x j($ - (;)lj (78) 

(b) The temperature distribution in region ii. 
Boundary conditions and the distribution of 

pi are given as follows : 
Boundary conditions ; 

zi = 0 at 5 = 0, 

Ti = T,(y), $ = 0 at < = 6,. 

Distribution of qi ; 

Ti = ‘&m(Y). 1 (k)- (;)3. (79) 

(c) The temperature distribution in region iii. 
Boundary conditions and the distribution of 

Tii are given as follows : 

17-;ii = 0 at ?j = 0, Tii = T,( -t + 6r), 

(ii) The base of [ < 1. 
As ST is smaller than 6, it is impossible to ex- 

tend the temperature distribution in the core 
region to the outer edge of the thermal boundary 
layer. Boundary conditions for the temperature 
distribution are given at the edge of the velocity 
boundary layer and at the wall. Conditions at the 
edge of the velocity boundary layer are so given 
as the values of the temperature distribution and 
its gradient connect smoothly with their values 
in the core region. But at the wall, besides the 
condition of T = 0, we must consider another 
condition; that is, the temperature gradient 
must be the same magnitude as the value for the 
caseofi 3 1. 

(a) The temperature distribution in region i. 
Boundary conditions and the distribution of 

I& are given as follows : 

ly = 0, 
3_ 2 

- s. T,(s - Ls) at q = 0. 
aq T 

T = T,($ - 6), 
(?I& dT 

- - -2 at q = 6 
iiy- dy ,>=+_a 

(81) 

(b) The temperature distribution in region ii. 
Boundary conditions and the distribution of 

Ti are; 

T:,i 0, aTi - 2 = at s 
T,(Y) at 5 = 0, 

Ti = T,(y), 
a; 
$ = 0 at 4 = 6 

. (82) 
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(c) The temperature distribution in region iii. 
Boundary conditions and the distribution of 

~ji are; 

Tii = 0, 
a~ii 2 
- = s 
aq T 

T,(-++d) at q=O, ’ =$PrRe 
8 1 (+ +A &). (89) 

Substituting equations (63)-(66) into the above 
at q =d equations, we obtain the solutions for C, and [. 

The relation between Pr and F(Pr) is indicated 

~ii = T,(-3 + 6) p 5 - 2~ + ~ i( ) 
+ (3$-2$)}-~{$--$(;-6)} 

in Table 1. 

Table 1. The relation betwen Pr and F(Pr) 

Pr 0.851 1 3 10 30 co 

2.2.4. Solution for 
c > 1. Substituting 
equations (76) and 
higher order terms, 
equations : 

(83) 

C, and 5. (1) The case of 
equations (78H80) into 
(77), and neglecting the 
we obtain the following 

F(Pr) 1 0.139 0441 0.262 0.253 0.250 

[ = F(Pr) (90) 

c, = 
(0.375 Pr 5 - 04937) Re 

K* 
(91) 

1 1 --- 

2.2.5. The Nusselt number. The Nusselt num- 
ber is defined by equation (92) 

[S PrRe qd 

N” = k(T, - TmiJ 
(92) 

x r,C:++3~+-$(&)2+$3] (84) 
where q is the heat flux at the wall and is written 
as q = (&kzPrRe. T,ix is the mixed mean 

(85) temperature defined by the following equation : 

d/2 d/2 

Substituting the values of C,, C,, A and 6, 
which are given in equations (63)(66), we obtain Mix = & 

ss 
T UdYdZ. 

the solution for C3 and [. -d/2 -d/2 

C, = 0.225 Re K-* (86) Substituting the above definitions of q and 

i = 0.851 Pr-’ 
T,, into equation (92) we can write the Nusselt 

(87) number as follows : 

The above results are valid for the range of Nu = 
Pr Re 

the Prandtl number smaller than O-851. 
(ii) The case of c < 1. 
Substituting equations (81x83) into equa- 

4-i, _[ Tadydz 

(93) 

tions (76) and (77), and neglecting the higher 
In order to calculate the first approximation 

order terms, we obtain the following equations : 
of the Nusselt number, the denominator of 
equation (93) might be written as 
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This approximation means that we neglect 8 t-s 

the existence of the boundary layer. Substituting + i [ (ni li + Uiii 7,iJ dy dz 

equations (6) and (75) into the denominator of t-s d 
equation (93) we obtain the following result as 
the first approximation for the Nusselt number. 

+ _,“+, { aii TidYdtl. 

Pr I@ 
Neglecting the higher order terms which are 

Nul = 410.375 Pr [ + 0.0468)’ 
(94) contained in the boundary layer correction 

terms, we can calculate the value of the above 

Defining the Nusselt number for a straight equation. The distributions of Ui, uii, uiii and 

square channel under a condition of constant T, Ti, ~ii are given by equations (40) (46) (51) 

wall temperature gradient by Nu, (Nu, = 3.63) and (78)(80), respectively. The result of the 

and non-dimensionize Nu, by Nu,, we have second approximation is given by equation (96) 

Nu2 0.0689 Kt 
---c 
Nuo r96) 0.375 { + 

Nu, 0.0689 K3 
--= 
Nuo 0.375 [ + (0.0468/I+). 

(95) 

According to the value of the Prandtl num- 
ber, we must use equation (87) or (90) to calculate 
the value of [ in the above equation. 

The second approximation for the Nusselt 
number can be obtained from the consideration 
of the existence of the boundary layer. 

(i) The case of 5 > 1 (Pr < 0.851). 
Considering the existence of the boundary 

layer, we write the denominator of equation (93) 
as follows : 

where I in the above equation is calculated by 
equation (87). 

(ii) The case of 5 d 1 (Pr 3 0851). 
We write the denominator of equation (93) as 

follows : 

_tj jj 7-u dv dz = 2 j[’ ;j;a T,,(Y). u,W-Wz 

_ - 2 

+2[ [ [ Tuidydz+ ( 
j’s b 

_~- ’ 6 Y~ii~iiidydz 

:-a 3 

+ _)+aj~~7;iuiid~dzl. 

The distribution of I& Ti and ~ii are given by 
equations (81)-(83). The result for this case is 
given as follows : 

Nu2 0.0689 Kf 
---ZZZ 
Nu, [ 

i 
0375 i + 

(97) 
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where we must use equation (9) to calculate the 
value of [_ 

A schematic drawing of the experimental 
apparatus is shown in Fig. 5. Air flow in a curved 
square channel, having dimensions of R = 267 
mm and d = 20 mm (d/R = 0*0714), is used and 
the distributions of u and 7’ of the fully developed 
flow are measured under the condition of a 
constant wall temperature gradient. The Nusselt 
number is obtained by use of these distributions. 

The upper and the lower walls of the channel 
(see Fig. 5) are of iron plates with the prescribed 
dimension, and the inner and the outer walls are 
of brass plates. These four walls are heated by 
independent electric heaters so that a constant 
wall temperature gradient is maintained. The 
surface temperature of each wall is measured by 
Cu-Co thermocouples soldered to it. The 
measured c~cu~crential and flow (axial) direc- 
tional wall temperature distributions are shown 
in Fig. 6. 

The velocity distribution is measured by a 
constant current thermistor bead anemometer 
whose performance between the resistance and 

li’ 

the 

so - 

K-389 

70 - 

so- 
r l 0.490C/cm 

30 - 

I I I 

40 100 160 220 

8, degree 

FIG. 6. Wall temperature distribution. 

wind velocity is calibrated in advance. 
Because of the strong temperature dependence 
of the thermistor resistance, the velocity distribu- 

ectrlc heoMr\ 

Insulator 

,,y 

eosurino 

channel 

Thermocouple 

Cross section of the curved channel 

FIG. 5. Experimental apparatus. 
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FIG. 7. Distribution of u at y = 0. 
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FIG. 8. Distribution of u at z = 0. 

UCHIDA and T. UKON 

tion is measured under the condition of zero wall 
heat flux. The temperature distribution in the 
channel is measured by a Cu-Co thermocouple 
of 0.1 mm dia. Lead wires of the thermistor and 
the thermocouple are in an L-shape support so 
that the results may not be influenced by a 
measuring hole. 

3.1. Experimenjal result 
3.1.1. TheJlowfield. The axial velocity distri- 

bution, u, is shown in Fig. 7 and 8. The practical 
flow field is three dimensional due to the second- 
ary flow, and the velocity of (1.4~ + o2 + w”)* is 
measured by the thermistor anemometer. How- 
ever, considering u >> v, w, this value may be 
approximated by u without a serious error. 

Figures 7 and 8 respectively indicate the 
dependency of u at y = 0 on z and that at z = 0 
on y. The maximum value of u is displaced to the 
centrifugal force direction and the dependency 
of u on z is weakened with an increase 01 the 
Dean number K. For sufficiently large K, these 
figures show that the gradient of u indicates a 
rapid change near the wall of the passage. These 
experimental results mean that we may assume 
the existence of the velocity boundary layer along 
the wall in the theoretical analysis. The dotted 
lines in figures represent the distribution of 
u,(y) due to equation (6). 

The relation between the resistance coefficient, 

6 

FIG. 9. The resistance coefficient 



FORCED CONVECTIVE HEAT TRANSFER 1803 

Ai/& and 12/&, and the Dean number K is 
indicated in Fig. 9. The open circles in the figure 
are experimental results obtained by H. 
Ludwieg [4] for a square channel whose R/d 
equalled 5.67. The figure indicates that analytical 
and experimental results are in good agreement. 
The solid circles in the figure indicate experi- 
mental results having Reynolds numbers larger 
than 8.0 x lo3 and these are data in a turbulent 
region. The transition from a laminar to a 
turbulent flow is measured by a hot-wire. In this 
experiment, the transition occurs at K + 850 
(Re + 3200) and the value of the critical 
Reynolds number is smaller than that measured 
by H. Ludwieg, i.e. about 8000. The large turbu- 
lent intensity at the entrance of the curved 
channel in our experiment may be responsible 
for this discrepancy. 

The dependency of u on K is weakened after 
the transition and the velocity distributions 
hardly deform with an increase in K. 

3.1.2. The temperature field. Corresponding 
with the velocity distribution data, the tempera- 
ture distributions at y = 0 and z = 0 are indi- 
cated in Figs. 10 and 11, respectively. The same 

Y-A-A-A-A-A- 

15 
.-.-.-._a,.-.-•-• 

. K- 180 o K= 876 

A 369 A 1507 
. 613 0 2550 

FIG. 10. Distribution of Tat y = 0. 

60 

-05 0 0.5 

. K= 180 o K= 876 

A 389 A 1507 

. 613 0 2 550 

FIG. 11. Distribution of Tat z = 0. 

tendency as in the flow field is observed and the 
validity of the boundary layer approximation is 
also assured. As mentioned in the preceding 
section, the distribution of u is hardly deformed 
with a change of K when K is above 850. 
Therefore, the distributions of T in the core 
region are theoretically expected to be similar 
regardless the value of K. However, the experi- 
mental results obtained and shown in Fig. 11 are 
quite different from the expectation. This dis- 
agreement is presumably caused by an actual 
experimental condition which might be contrary 
to the condition of the constant circumferential 
wall temperature at the cross section, adopted in 
the theory. 

3.1.3. The Nusselt number. The comparison 
between the analytical and experimental results 
on the Nusselt number is shown in Fig. 12. The 
experimental value of the Nusselt number is 
obtained by use of equation (93). Measured 
distributions of u and T are substituted into the 
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denominator of equation (93) and this value is 
calculated by the graphical integration. 

20 

IO - 

a- 

aIp 6- 

4- 

3- 

‘r 
0 Laininar flow 

I’ I II III 
. Tubulent flow 

IO2 2 3 4 6 8 ,03 2 3 4 6 

K 

FIG. 12. The Nusselt number. 

Open and closed circles in the figure are the 
experimental results in laminar and turbulent 
flow regions, respectively, As is shown in the 
figure, experimental data in a turbulent region 
can be correlated by equation (98). 

Nu 
__ = 0.0208 K+ . (1 + 0.287 II-+). (98) 
N% 

Equation (98) is based on the analytical result 
of a turbulent flow heat transfer in a curved 
pipe [5], where the hydraulic diameter is used 
as the reference length instead of the pipe 
diameter. 

Considering a fully developed laminar flow 
and tem~rature fields in a square cross sectional 
curved channel under the condition of a constant 
wall temperature gradient, we obtained the 
following conclusions : 

(1) Due to the affect of the centrifugal force. a 
secondary flow appears in the curved channel. 
The intensity of the secondary flow increases 
with the increase of the Dean number 
K(K = Re . Jd/R), and it is possible to consider 
the existence of the secondary flow boundary 
layer for the range of the large Dean number 
when the effect of curvature of the channel 
cannot be neglected. 

(2) We may divide the flow and the temperature 
fields into two regions, the core and the bound- 
ary layer region, and obtain analytical results 
considering the balance of kinetic energy and 
entropy production in the boundary layer. 

(3) We obtained the resistance coefficient and 
the Nusselt number for a flow in a square cross 
sectional curved channel and indicated that 
these values were seriously increased by the 
affect of the secondary flow. 

(4) Experimental results for the velocity and 
the temperature distribution were obtained and 
the Nusselt numbers were calculated using 
them. Analytical and experimental results were 
compared with the theoretical prediction and it 
was found that they were in good agreement. 
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CONVECTION FORCEE THERMIQUE DANS UN CANAL COURBE A SECTION DROITE CARREE 

R&r&-On a obtenu sous la condition d’un flux thermique parittal constant des resultats analytiques 
et expkmentaux pour un Qoulement laminaire entibrement developpt dans un canal courbe a section 
droite car&e. Un koulement secondaire dO B la force centrifuge apparait dans le canal et les champs de 
vitesse et de temperature sont fortement influences. Dans le cas d’un ecoulement secondaire intense, on a 
introduit le concept dune couche &mite de I’ecoulement secondaire. On a rksolu sur la base du bilan 
d’knergie cinetique et d’entropie les equations du moment et de I’energie dans la couche limite. On obtient 
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analytiquement et experimentalement le coefftcient de rCsistance et le nombre de Nusselt et on montre 
qu’ils sont en bon accord. 

ERZWUNGENE KO~EKTIVE W~RMEUBERTRAGUNG IN EINEM 
GEKRiiMMTEN KANAL MIT QUADRATISCHEM QUERSCHNTTT. 

Zusammenfaswng Bei einem gekriimmten Kanal mit quadratischcm Qucrschnitt wurdc dcr Warmc- 
iibergang fiir den Fall des konstanten Wandwlrmestroms fiir vollausgebildete laminate Striimung 
analytisch und experimentell untersucht. Verursacht dumb die ZentrifugalkraB bildet sich eine Sekuntir- 
striimung im Kanal aus, die die Hauptstriimung und das Temperaturfeld entscheidend beeinflusst. Im 
Fall einer intensiven ~ku~~~tr6rnung wird fiir die Untersuchung das Gren~chich~odeU ftir die 
Sekun~~str6mung angewandt. Die Bewegungs- und die Ener~e~eichu~ fit die Grenz~hicht werden 
mit Bilanzen fur die kinetische Energie und die Entropieproduktion gel&t. Der Wid~standsk~fftzient 

und die NusseltZahl werden analytisch und experimentell bestimmt und stimmen gut iiberein. 

BbIHYXflEHHAH HOHBEKHHH TEIIJIA B KPHBOJIBHEHHOM 
KAHAJIE KBAAPATHOI’O CEYEHHfI 

~~~~-coo6~a~Tc~ pe3yJIbTaTbI aHa~~T~qeCKOr0 M 3KCffep~~eHTa~bHOrO ~CC~e~OBa- 

HH~TeKJIOO6MeHa~p~~OjrHOC~lropa3BIlTOM~3M~Ha~HOMTe~eHEl~BKp~BO~~He~HO~ KFUSiJle 

NBaApaTHOl'O Ce9eHEIR B yCJiOBMRX IIOCTORHHOFO TeIIJIOBOrO IIOT0Ka Ha CTeHKe. EiJWO~apR 

qenTpo6emaot CIlJle B KaHaJle BO3HkiKaeT BTOpMYHOe TeSeHEle, IIpWieM IIOJIFI CKOpOCTH II 

Tenrneparypbl: canbHosnHRIo~ApyrHaApyra.An~VrHTeHclleHblx3~0pIlY~bl~Te4eHllflB~0~B~- 

CR IIOHJiTEIe norpaHnrHor0 CJIOR BTOpHq~0r0 Teqemm. YpaBHeHtra ABHAeH&iK H meprm B 

flOFpaHElWiOM CJlOe peIUaIOTCR Ha OCHOBe Basama KEiHeTWieCKOii 3HeprHR II IIpOH3BOACTBa 

aHTpO~~~.AHa~~T~~eCK~M li 3KC~ep~MeHTa~bH~M ilyTel# ~O~yYeH~ KO3~~~~~eHT r~~pOA~- 

HaM~qeCKOrO COKpOT~B~eH~~ M YWCJIO HyCCeJIbTa. ~OHCTaT~pyeTCK XOpOIlIee COfJlaCUe 

TeOpHIIC OllbiTOM. 


